首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57468篇
  免费   5108篇
  国内免费   7篇
  2023年   267篇
  2021年   463篇
  2020年   400篇
  2019年   430篇
  2018年   1036篇
  2017年   1035篇
  2016年   1239篇
  2015年   1340篇
  2014年   1453篇
  2013年   2452篇
  2012年   3757篇
  2011年   4048篇
  2010年   2212篇
  2009年   1561篇
  2008年   3375篇
  2007年   3448篇
  2006年   3183篇
  2005年   2879篇
  2004年   2796篇
  2003年   2564篇
  2002年   2591篇
  2001年   1894篇
  2000年   2074篇
  1999年   1241篇
  1998年   624篇
  1997年   530篇
  1996年   591篇
  1995年   550篇
  1994年   555篇
  1993年   537篇
  1992年   780篇
  1991年   624篇
  1990年   595篇
  1989年   546篇
  1988年   503篇
  1987年   460篇
  1986年   422篇
  1985年   528篇
  1984年   548篇
  1983年   483篇
  1982年   431篇
  1981年   387篇
  1980年   351篇
  1979年   384篇
  1978年   359篇
  1977年   325篇
  1976年   322篇
  1975年   357篇
  1974年   314篇
  1973年   290篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
101.
102.
103.
104.
105.
Abstract

Combined UV- and liquid scintillation-HPLC has been applied to study the complexing of purine nucleosides with Pt(II)-diamine ions, and the effect of the complex formation on the acidic depurination.  相似文献   
106.
A proliferation-inducing ligand (APRIL), a member of the TNF ligand superfamily with an important role in humoral immunity, is also implicated in several cancers as a prosurvival factor. APRIL binds two different TNF receptors, B cell maturation antigen (BCMA) and transmembrane activator and cylclophilin ligand interactor (TACI), and also interacts independently with heparan sulfate proteoglycans. Because APRIL shares binding of the TNF receptors with B cell activation factor, separating the precise signaling pathways activated by either ligand in a given context has proven quite difficult. In this study, we have used the protein design algorithm FoldX to successfully generate a BCMA-specific variant of APRIL, APRIL-R206E, and two TACI-selective variants, D132F and D132Y. These APRIL variants show selective activity toward their receptors in several in vitro assays. Moreover, we have used these ligands to show that BCMA and TACI have a distinct role in APRIL-induced B cell stimulation. We conclude that these ligands are useful tools for studying APRIL biology in the context of individual receptor activation.  相似文献   
107.
Electron Paramagnetic Resonance (EPR) monitored redox titrations are a powerful method to determine the midpoint potential of cofactors in proteins and to identify and quantify the cofactors in their detectable redox state.The technique is complementary to direct electrochemistry (voltammetry) approaches, as it does not offer information on electron transfer rates, but does establish the identity and redox state of the cofactors in the protein under study. The technique is widely applicable to any protein containing an electron paramagnetic resonance (EPR) detectable cofactor.A typical titration requires 2 ml protein with a cofactor concentration in the range of 1-100 µM. The protein is titrated with a chemical reductant (sodium dithionite) or oxidant (potassium ferricyanide) in order to poise the sample at a certain potential. A platinum wire and a Ag/AgCl reference electrode are connected to a voltmeter to measure the potential of the protein solution. A set of 13 different redox mediators is used to equilibrate between the redox cofactors of the protein and the electrodes. Samples are drawn at different potentials and the Electron Paramagnetic Resonance spectra, characteristic for the different redox cofactors in the protein, are measured. The plot of the signal intensity versus the sample potential is analyzed using the Nernst equation in order to determine the midpoint potential of the cofactor.  相似文献   
108.
109.
110.
With the recent availability of high-resolution structural information for several key ion channel proteins and large-scale computational resources, Molecular Dynamics has become an increasingly popular tool for ion channel simulation. However, the CPU requirements for simulating ion transport on time scales relevant to conduction still exceed the resources presently available. To address this problem, we have developed Biology Monte Carlo (BioMOCA), a three-dimensional (3D) coarse-grained particle ion channel simulator based on the Boltzmann Transport Monte Carlo (BTMC) methodology. Although this approach is widely employed in the engineering community to study charge transport in electron devices, its application to molecular biology and electrolytes in general is new and hence must be validated. The pair correlation function, which is a measure of the microscopic structure of matter, provides a suitable benchmark to compare the BTMC method against the well-established Equilibrium Monte Carlo (EMC) approach. For validation purposes BioMOCA is used to simulate several simple homogeneous equilibrium electrolytes at concentrations of physiological interest. The ion–ion pair correlation functions computed from these simulations compare very well with those obtained from EMC simulations. We also demonstrate several performance-improving techniques that result in a several-fold speed-up without compromising the pair correlation function. BioMOCA is then used to perform full 3D simulations of ion transport in the gramicidin A channel in situ in a membrane environment, as well as to study the link between the electrostatic and dielectric properties of the protein and the channel's selectivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号